Minggu, 18 Desember 2011

Fungsi linear

Dalam matematika, istilah fungsi linear dapat mengacu kepada salah satu dari dua konsep berbeda namun berhubungan:

* Fungsi polinomial orde satu, satu variabel;
* Peta antara dua ruang vektor yang mempertahankan penjumlahan vektor dan perkalian skalar


Dalam geometri analitis, istilah fungsi linear kadang-kadang digunakan dengan maksud fungsi polinomial orde satu dari variabel tunggal. Fungsi ini disebut linear karena grafiknya pada bidang Cartesius adalah garis lurus.

Fungsi seperti itu dapat ditulis sebagai:

f(x) = mx + b
(y − y1) = m(x − x1)Dalam geometri analitis, istilah fungsi linear kadang-kadang digunakan dengan maksud fungsi polinomial orde satu dari variabel tunggal. Fungsi ini disebut linear karena grafiknya pada bidang Cartesius adalah garis lurus.

Fungsi seperti itu dapat ditulis sebagai:

f(x) = mx + b
(y − y1) = m(x − x1)
0 = Ax + By + C

dengan m dan b adalah konstanta riil dan x adalah variabel riil. Konstana m disebut sebagai gradien atau kemiringan, sedangkan b memberikan titik perpotongan antara grafik fungsi tersebut dengan sumbu y. Mengubah y membuat garis tersebut lebih curam atau landai, sementara mengubah b akan menggerakkan garis ke atas atau ke bawah.

Contoh fungsi yang grafiknya berupa garis lurus adalah:

* f1(x) = 2x + 1
* f2(x) = x / 2 + 1
* f3(x) = x / 2 − 1.

Grafiknya ditunjukkan pada gambar di sebelah kanan.
[sunting] Ruang vektor

Dalam matematika lanjut, sebuah fungsi linear berarti fungsi yang merupakan pemetaan linear, yaitu pemetaan antara dua ruang vektor yang mempertahankan penjumlahan vektor dan perkalian skalar.

Contohnya, bila x dan f(x) direpresentasikan sebagai vektor koordinat, maka fungsi linear adalah fungsi yang dapat dinyatakan sebagai:

f(x) = Mx,

dengan M adalah matriks. Sebuah fungsi

f(x) = mx + b

adalah peta linear jika dan hanya jika b = 0. Untuk nilai lain dari b, fungsi ini tergolong dalam kelas yang lebih umum, yaitu peta afin.
0 = Ax + By + C

dengan m dan b adalah konstanta riil dan x adalah variabel riil. Konstana m disebut sebagai gradien atau kemiringan, sedangkan b memberikan titik perpotongan antara grafik fungsi tersebut dengan sumbu y. Mengubah y membuat garis tersebut lebih curam atau landai, sementara mengubah b akan menggerakkan garis ke atas atau ke bawah.

Contoh fungsi yang grafiknya berupa garis lurus adalah:

* f1(x) = 2x + 1
* f2(x) = x / 2 + 1
* f3(x) = x / 2 − 1.

Grafiknya ditunjukkan pada gambar di sebelah kanan.

Ruang vektor

Dalam matematika lanjut, sebuah fungsi linear berarti fungsi yang merupakan pemetaan linear, yaitu pemetaan antara dua ruang vektor yang mempertahankan penjumlahan vektor dan perkalian skalar.

Contohnya, bila x dan f(x) direpresentasikan sebagai vektor koordinat, maka fungsi linear adalah fungsi yang dapat dinyatakan sebagai:

f(x) = Mx,

dengan M adalah matriks. Sebuah fungsi

f(x) = mx + b

adalah peta linear jika dan hanya jika b = 0. Untuk nilai lain dari b, fungsi ini tergolong dalam kelas yang lebih umum, yaitu peta afin.

RELASI

Definisi

Jika terdapat himpunan A dan himpunan B (A bisa sama dengan B), maka relasi R dari A ke B adalah subhimpunan dari A×B.

R_{AB} \subseteq A \times B

Relasi dan fungsi proposisi

Sebuah relasi dapat dikaitkan dengan sebuah fungsi proposisi atau kalimat terbuka yang himpunan penyelesaiannya tidak lain adalah relasi tersebut.

Sebagai contoh, pandang himpunan B = { apel, jeruk, mangga, pisang } dengan himpunan W = { hijau, kuning, orange}. Suatu relasi R dari A ke B didefinisikan sebagai R = {(apel, hijau), (jeruk, orange), (mangga, hijau), (pisang, kuning)}. Terdapat fungsi proposisi w(x, y) = "x berwarna y", yang himpunan penyelesaiannya adalah {(apel, hijau), (jeruk, orange), (mangga, hijau), (pisang, kuning)}, yang tidak lain adalah relasi R.

Relasi A×A

Sebuah relasi A×A, yaitu relasi dari himpunan A kepada A sendiri, dapat memiliki sifat-sifat berikut:

* Refleksif
* Irefleksif
* Simetrik
* Anti-simetrik
* Transitif

Kita menyebut relasi R dari A kepada A sebagai relasi R dalam A.

Relasi Refleksif

Sebuah relasi R dalam A disebut memiliki sifat refleksif, jika setiap elemen A berhubungan dengan dirinya sendiri.

\forall_{a \in A}\quad (a,a) \in R

atau

\forall_{a \in A}\quad a R a

Contoh relasi yang memiliki sifat seperti ini adalah relasi “x selalu bersama y.”, dengan x dan y adalah anggota himpunan seluruh manusia. Jelas sekali bahwa setiap orang pasti selalu bersama dengan dirinya sendiri.

Relasi Irefleksif

Relasi R dalam A disebut memiliki sifat irefleksif, jika setiap elemen A tidak berhubungan dengan dirinya sendiri.

\forall_{a \in A}\quad (a,a) \notin R

atau

\forall_{a \in A}\quad \lnot(a R a)

Contoh relasi irefleksif adalah relasi “x mampu mencukur rambut y dengan rapi sempurna.”, dengan x dan y adalah setiap pemotong rambut. Diandaikan bahwa setiap orang hanya dapat mencukur rambut orang lain dengan rapi sempurna, maka relasi ini adalah irefleksif, karena tidak ada seorang tukang cukur a yang mampu mencukur rambutnya sendiri.

Contoh lain dalam himpunan bilangan bulat adalah, relasi < dan > adalah irefleksif.

Relasi Simetrik

Relasi R dalam A disebut memiliki sifat simetrik, jika setiap pasangan anggota A berhubungan satu sama lain. Dengan kata lain, jika a terhubung dengan b, maka b juga terhubung dengan a. Jadi terdapat hubungan timbal balik.

\forall_{a, b \in A}\quad (a,b) \in R \rightarrow (b,a) \in R

atau

\forall_{a, b \in A}\quad a R b \rightarrow b R a

Sebuah relasi “x + y genap” adalah relasi simetrik, karena untuk sembarang x dan y yang kita pilih, jika memenuhi relasi tersebut, maka dengan menukarkan nilai y dan x, relasi tersebut tetap dipenuhi. Misalnya untuk pasangan (5, 3) relasi tersebut dipenuhi, dan untuk (3, 5) juga.

Relasi Anti-simetrik

Jika setiap a dan b yang terhubung hanya terhubung salah satunya saja (dengan asumsi a dan b berlainan), maka relasi macam ini disebut relasi anti-simetrik.

\forall_{a, b \in A}\quad a \neq b \rightarrow ((a,b) \in R \rightarrow (b,a) \notin R)

atau

\forall_{a, b \in A}\quad a \neq b \rightarrow (a R b \rightarrow \lnot (b R a))

Dalam kebanyakan literatur biasanya ditulis sebagai kontraposisinya seperti di bawah ini. Keuntungan bentuk ini adalah tidak mengandung negasi, dan hanya mengandung satu implikasi.

\forall_{a, b \in A}\quad (a,b) \in R \wedge (b,a) \in R \rightarrow a=b

atau

\forall_{a, b \in A}\quad a R b \wedge b R a \rightarrow a=b

Relasi \leq bersifat anti-simetrik, karena 5 \leq 6 mengakibatkan \lnot (6 \leq 5). Demikian juga jika ada p dan q yang terhadap mereka berlaku p \leq q dan q \leq p berarti p = q.

Relasi Transitif

Sebuah relasi disebut transitif jika memiliki sifat, jika a berhubungan dengan b, dan b berhubungan dengan c, maka a berhubungan dengan c secara langsung.

(a,b) \in R \wedge (b,c) \in R \rightarrow (a,c) \in R

atau

\forall_{a, b, c \in A} {a R b \wedge b R c \rightarrow a R c}

Sebagai contoh, relasi dua transitif. Misalnya untuk 5, 6, dan 7, berlaku 5 < 6, 6 < 7, dan 5 < 7. Relasi khusus Relasi Ekivalen Sebuah relasi disebut sebagai relasi ekivalen jika relasi tersebut bersifat: * Refleksif * Simetrik, dan * Transitif Relasi ekuivalen memiliki hubungan erat dengan partisi, yang merupakan alasan mengapa partisi dari sebuah himpunan disebut kelas ekivalen atau kelas kesetaraan. Orde Parsial

Orde parsial adalah relasi yang bersifat:

* Refleksif
* Anti-simetrik, dan
* Transiti

FUNGSI

Fungsi, dalam istilah matematika adalah pemetaan setiap anggota sebuah himpunan (dinamakan sebagai domain) kepada anggota himpunan yang lain (dinamakan sebagai kodomain). Istilah ini berbeda pengertiannya dengan kata yang sama yang dipakai sehari-hari, seperti “alatnya berfungsi dengan baik.” Konsep fungsi adalah salah satu konsep dasar dari matematika dan setiap ilmu kuantitatif. Istilah "fungsi", "pemetaan", "peta", "transformasi", dan "operator" biasanya dipakai secara sinonim.

Anggota himpunan yang dipetakan dapat berupa apa saja (kata, orang, atau objek lain), namun biasanya yang dibahas adalah besaran matematika seperti bilangan riil. Contoh sebuah fungsi dengan domain dan kodomain himpunan bilangan riil adalah y=f(2x), yang menghubungkan suatu bilangan riil dengan bilangan riil lain yang dua kali lebih besar. Dalam hal ini kita dapat menulis f(5)=10.


Notasi
Untuk mendefinisikan fungsi dapat digunakan notasi berikut.

f : A \rightarrow B

Dengan demikian kita telah mendefinisikan fungsi f yang memetakan setiap elemen himpunan A kepada B. Notasi ini hanya mengatakan bahwa ada sebuah fungsi f yang memetakan dua himpunan, A kepada B. Tetapi bagaimana tepatnya pemetaan tersebut tidaklah terungkapkan dengan baik. Maka kita dapat menggunakan notasi lain.

x \in A
f : x \rightarrow x^2

atau

f(x) =\, x^2


Fungsi sebagai relasi

Sebuah fungsi f dapat dimengerti sebagai relasi antara dua himpunan, dengan unsur pertama hanya dipakai sekali dalam relasi tersebut.

Domain dan Kodomain
Pada diagram di atas, X merupakan domain dari fungsi f, Y merupakan kodomain

Domain adalah daerah asal, kodomain adalah daerah kawan, sedangkan range adalah daerah hasil

Jenis-jenis fungsi


Fungsi injektif

Fungsi f: A → B disebut fungsi satu-satu atau fungsi injektif jika dan hanya jika untuk sebarang a1 dan a2 \in A dengan a1 tidak sama dengan a2 berlaku f(a1) tidak sama dengan f(a2). Dengan kata lain, bila a1 = a2 maka f(a1) sama dengan f(a2).

Fungsi surjektif

Fungsi f: A → B disebut fungsi kepada atau fungsi surjektif jika dan hanya jika untuk sebarang b dalam kodomain B terdapat paling tidak satu a dalam domain A sehingga berlaku f(a) = b. Dengan kata lain, suatu kodomain fungsi surjektif sama dengan kisarannya (range).

Fungsi bijektif

Fungsi f: A → B disebut disebut fungsi bijektif jika dan hanya jika untuk sebarang b dalam kodomain B terdapat tepat satu a dalam domain A sehingga f(a) = b, dan tidak ada anggota A yang tidak terpetakan dalam B. Dengan kata lain, fungsi bijektif adalah sekaligus injektif dan surjektif.

Minggu, 27 November 2011

HUKUM COSINUS

Hukum kosinus, atau disebut juga aturan kosinus, dalam trigonometri adalah aturan yang memberikan hubungan yang berlaku dalam suatu segitiga, yaitu antara panjang sisi-sisi segitiga dan kosinus dari salah satu sudut dalam segitiga tersebut.
Perhatikan gambar segitiga di kanan.
Aturan kosinus menyatakan bahwa
c^2 = a^2 + b^2 - 2ab \cos \gamma\,
dengan \gamma\, adalah sudut yang dibentuk oleh sisi a dan sisi b, dan c adalah sisi yang berhadapan dengan sudut \gamma\,.
Aturan yang sama berlaku pula untuk sisi a dan b:
a^2 = b^2 + c^2 - 2bc \cos \alpha\,
b^2 = a^2 + c^2 - 2ac \cos \beta\,
Dengan kata lain, bila panjang dua sisi sebuah segitiga dan sudut yang diapit oleh kedua sisi tersebut diketahui, maka kita dapat menentukan panjang sisi yang satunya. Sebaliknya, jika panjang dari tiga sisi diketahui, kita dapat menentukan besar sudut dalam segitiga tersebut. Dengan mengubah sedikit aturan kosinus tadi, kita peroleh:
\cos \alpha\ = {b^2 + c^2 - a^2 \over 2bc}
\cos \beta\ = {a^2 + c^2 - b^2 \over 2ac}
\cos \gamma\ = {a^2 + b^2 - c^2 \over 2ab}

http://id.wikipedia.org/wiki/Hukum_cosinus Hukum Kosinus Pertama

a = b \cos \gamma + c \cos \beta\,
b = c \cos \alpha + a \cos \gamma\,
c = a \cos \beta + b \cos \alpha\,

Hukum Kosinus Kedua

a^2 = b^2 + c^2 - 2bc \cos \alpha\,
b^2 = a^2 + c^2 - 2ac \cos \beta\,
c^2 = a^2 + b^2 - 2ab \cos \gamma\,

Jumat, 25 November 2011

sinus dan hukum sinus

SINUS
http://id.wikipedia.org/wiki/Hukum_sinusSinus (lambang: sin; bahasa Inggris: sine) dalam matematika adalah perbandingan sisi segitiga yang ada di depan sudut dengan sisi miring (dengan catatan bahwa segitiga itu adalah segitiga siku-siku atau salah satu sudut segitiga itu 90o). Perhatikan segitiga di kanan; berdasarkan definisi sinus di atas maka nilai sinus adalah

Nilai sinus positif di kuadran I dan II dan negatif di kuadran III dan IV.

Nilai sinus sudut istimewa

\sin 0^o = 0\,
\sin 15^o = \frac {\sqrt{6} - \sqrt{2}}{4}\,
\sin 30^o = \frac{1}{2}\,
\sin 45^o = \frac {\sqrt{2}}{2}\,





\sin 60^o = \frac {\sqrt{3}}{2}\,






HUKUM SINUS

Dalam trigonometri, hukum sinus ialah pernyataan tentang segitiga yang berubah-ubah di udara. Jika sisi segitiga ialah (kasus sederhana) a, b dan c dan sudut yang berhadapan bersisi (huruf besar) A, B and C, hukum sinus menyatakan
{\sin A \over a}={\sin B \over b}={\sin C \over c}.\,
Rumus ini berguna menghitung sisi yang tersisa dari segitiga jika 2 sudut dan 1 sisinya diketahui, masalah umum dalam teknik triangulasi. Dapat juga digunakan saat 2 sisi dan 1 dari sudut yang tak dilampirkan diketahui; dalam kasus ini, rumus ini dapat memberikan 2 nilai penting untuk sudut yang dilampirkan. Saat ini terjadi, sering hanya 1 hasil akan menyebabkan seluruh sudut kurang daripada 180°; dalam kasus lain, ada 2 penyelesaian valid pada segitiga.
Timbal balik bilangan yang yang digambarkan dengan hukum sinus (yakni a/sin(A)) sama dengan diameter d . Kemudian hukum ini dapat dituliskan
{a \over \sin A }={b \over \sin B }={c \over \sin C } = d.
Dapat ditunjukkan bahwa:
d = \frac{abc} {2\sqrt{s(s-a)(s-b)(s-c)}} = \frac {2abc} {\sqrt{(a^2+b^2+c^2)^2+2(a^4+b^4+c^4) }}
di mana
s merupakan semi-perimeter
s = \frac{(a+b+c)} {2}

Turunan

Law of sines proof.png
Buatlah segitiga dengan sisi a, b, dan c, dan sudut yang berlawanan A, B, dan C. Buatlah garis dari sudut C pada sisi lawannya c yang menonjol sekali dalam 2 segitiga siku-siku, dan sebut panjang garis ini h.
Dapat diamati bahwa:
\sin A = \frac{h}{b} and \; \sin B = \frac{h}{a}
Kemudian:
h = b\,\sin A = a\,\sin B
dan
\frac{\sin A}{a} = \frac{\sin B}{b}.
Melakukan hal yang sama dengan garis yang digambarkan antara sudut A dan sisi a akan menghasilkan:
\frac{\sin B}{b} = \frac{\sin C}{c}
\sin 90^o = 1\,

imvedas.blogspot.com

Trigonometri (dari bahasa Yunani trigonon = tiga sudut dan metro = mengukur) adalah sebuah cabang matematika yang berhadapan dengan sudut segi tiga dan fungsi trigonometrik seperti sinus, cosinus, dan tangen. Trigonometri memiliki hubungan dengan geometri, meskipun ada ketidaksetujuan tentang apa hubungannya; bagi beberapa orang, trigonometri adalah bagian dari geometri.

Sejarah awal
Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.

Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segi tiga.

Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut.

Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis


Trigonometri sekarang ini
Ada banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.

Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik, optik, analisis pasar finansial, elektronik, teori probabilitas, statistika, biologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasi, kimia, teori angka (dan termasuk kriptologi), seismologi, meteorologi, oseanografi, berbagai cabang dalam ilmu fisika, survei darat dan geodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, teknik sipil, grafik komputer, kartografi, kristalografi.

Ada pengembangan modern trigonometri yang melibatkan "penyebaran" dan "quadrance", bukan sudut dan panjang. Pendekatan baru ini disebut trigonometri rasional dan merupakan hasil kerja dari Dr. Norman Wildberger dari Universitas New South Wales. Informasi lebih lanjut bisa dilihat di situs webnya


Hubungan fungsi trigonometri

\tan A = \frac{\sin A}{\cos A}\,

\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A}\,

\sec A = \frac{1}{\cos A}\,

\csc A = \frac{1}{\sin A}\,

Identitas trigonometri

\sin^2 A + \cos^2 A = 1 \,

1 + \tan^2 A = \frac{1}{\cos^2 A} = \sec^2 A\,

1 + \cot^2 A = \frac{1}{\sin^2 A} = \csc^2 A \,

Penjumlahan

\sin (A + B) = \sin A \cos B + \cos A \sin B \,

\sin (A - B) = \sin A \cos B - \cos A \sin B \,

\cos (A + B) = \cos A \cos B - \sin A \sin B \,

\cos (A - B) = \cos A \cos B + \sin A \sin B \,

\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \,

\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \,

Rumus sudut rangkap dua

\sin 2A = 2 \sin A \cos A \,

\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A -1 = 1-2 \sin^2 A \,

\tan 2A = {2 \tan A \over 1 - \tan^2 A} = {2 \cot A \over \cot^2 A - 1} = {2 \over \cot A - \tan A} \,

Rumus sudut rangkap tiga

\sin 3A = 3 \sin A - 4 \sin^3 A \,

\cos 3A = 4 \cos^3 A - 3 \cos A \,

Rumus setengah sudut

\sin \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{2}} \,

\cos \frac{A}{2} = \pm \sqrt{\frac{1+\cos A}{2}} \,

\tan \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} \, http://id.wikipedia.org/wiki/Trigonometri

TRIGONOMETRI

Trigonometri (dari bahasa Yunani trigonon = tiga sudut dan metro = mengukur) adalah sebuah cabang matematika yang berhadapan dengan sudut segi tiga dan fungsi trigonometrik seperti sinus, cosinus, dan tangen. Trigonometri memiliki hubungan dengan geometri, meskipun ada ketidaksetujuan tentang apa hubungannya; bagi beberapa orang, trigonometri adalah bagian dari geometri.

Sejarah awal
Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.

Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segi tiga.

Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut.

Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis


Trigonometri sekarang ini
Ada banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.

Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik, optik, analisis pasar finansial, elektronik, teori probabilitas, statistika, biologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasi, kimia, teori angka (dan termasuk kriptologi), seismologi, meteorologi, oseanografi, berbagai cabang dalam ilmu fisika, survei darat dan geodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, teknik sipil, grafik komputer, kartografi, kristalografi.

Ada pengembangan modern trigonometri yang melibatkan "penyebaran" dan "quadrance", bukan sudut dan panjang. Pendekatan baru ini disebut trigonometri rasional dan merupakan hasil kerja dari Dr. Norman Wildberger dari Universitas New South Wales. Informasi lebih lanjut bisa dilihat di situs webnya


Hubungan fungsi trigonometri

\tan A = \frac{\sin A}{\cos A}\,

\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A}\,

\sec A = \frac{1}{\cos A}\,

\csc A = \frac{1}{\sin A}\,

Identitas trigonometri

\sin^2 A + \cos^2 A = 1 \,

1 + \tan^2 A = \frac{1}{\cos^2 A} = \sec^2 A\,

1 + \cot^2 A = \frac{1}{\sin^2 A} = \csc^2 A \,

Penjumlahan

\sin (A + B) = \sin A \cos B + \cos A \sin B \,

\sin (A - B) = \sin A \cos B - \cos A \sin B \,

\cos (A + B) = \cos A \cos B - \sin A \sin B \,

\cos (A - B) = \cos A \cos B + \sin A \sin B \,

\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \,

\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \,

Rumus sudut rangkap dua

\sin 2A = 2 \sin A \cos A \,

\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A -1 = 1-2 \sin^2 A \,

\tan 2A = {2 \tan A \over 1 - \tan^2 A} = {2 \cot A \over \cot^2 A - 1} = {2 \over \cot A - \tan A} \,

Rumus sudut rangkap tiga

\sin 3A = 3 \sin A - 4 \sin^3 A \,

\cos 3A = 4 \cos^3 A - 3 \cos A \,

Rumus setengah sudut

\sin \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{2}} \,

\cos \frac{A}{2} = \pm \sqrt{\frac{1+\cos A}{2}} \,

\tan \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} \,